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Automatic Regulation Time Series for Sampled-data
Feedback Control Systems
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Abstract

In this literature, a new nonlinear digital controller is proposed for analyses and designs of sampled-data
feedback control systems. The controller is derived from the converging characteristic of a specified numerical
series. The ratios of neighborhoods of the series are formulated as function of the output of the plant and the
reference input command, and will be converged to be unities after the output has tracked the reference input
command. Two kind of servo system examples are used to illustrate effectiveness of the proposed nonlinear
digital controller.
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l. Introduction

For unit feedback discrete-time control systems,
the control sequences are usually functions of the
difference between the sampled reference input and
output of the plant [1-4]. The discrete-time control
sequence can be generated by Finite Impulse
Response (FIR) filter or Infinite Impulse Response
(IR) filter. The input of FIR or IIR filter is the
difference between the sampled reference input and
output of the plant. The output of FIR or IIR will be
the input of the plant. In general, they are linear
controllers. In this literature, a nonlinear discrete-time
control sequence described by periodic numerical

series G( jT,) with ratios of the reference input
and plant output is first proposed for analyses and
designs of sampled-data feedback control systems. 7',
represents the sampling interval. The ratios of
G((k+1)T,) to G(kT,) of the series are

formulated as a function of the reference input
command and the output of the plant. The value of

G(kT,) is the control input of the plant at time
interval between (k—1)7; and kT, . Thus, the

considered system is closed with G(' jT ). It will be
seen that the output of the plant tracks the reference
input command after ratios G((k+1)T;) [/
G(kT ) of the series being converged to unities. It

implies that G(kT,) will be converged to a

steady-state value for a constant reference input
applied. The stability of the closed-loop system is
guaranteed by selecting the proper function of ratios

G((k+1)T, )1 G(kT ). It will be proven that the
considered system with G(kI;) becomes a
negative feedback control system.

In following sections, basic concepts of the
proposed nonlinear discrete-time control sequence
are discussed first, and then two servo system
examples are used to illustrate their tracking
behaviors. Simulating results will show that the
proposed nonlinear digital controller gives another
effective way for analyses and designs of
sampled-data feedback control systems.

I1. The Automatic Regulation Time
Series

A numerical series with time interval 7 [1-4]
can be written as in the form of

G(jT;),j=123, ..nn+l, ... 1)
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where G( jT,) represents a constant value between
time interval between (j—1)7, and ; 7, . For
simplicity, the representation of G( jT;) will be
replaced by G(j) in following evaluations. The

ratios G(j+1)/G(j) of the series are defined as
in the form of

F(j) =G(j+1)IG(j),j=123. n n+l.. (2)

Equation (2) shows the value of G(n+1)
approaches to be a constant value when the value of
F(n) approaches to be unity. Now, the problem for

closing the considered system is to find the formula
of F(j) which is the function of the reference

input command R and the output of the plant Y.
G(n—+1) is used as the input of the considered

system. Considering a series given bellows:
G(n+1)= {Zai(R(n)/Ys(n))’}G(n) )
i=0

where R(n) represents the reference input command
andY,(n) represents the non-zero sampled output

of the plant at the sampling interval » T . Equation (3)

is a possible way to close the considered system as a
sampled-data feedback control system. Assume the
reference input command has been tracked by
applying control effort G( j ), Equation (3) becomes

G(n+1)= iaiG(n) 4)

i=0

For steady-state condition, G('n + 1)approaches to
be a constant value, it gives
Zai =1 (5)

i=0

Rearranging Equation (3) and taking the derivative of
it with respectto Y¢(n)/ R(n), we have

F(n)=Ya(1,(n)/R(n))’ ©

And
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The sufficient but not necessary condition for
Equation (7) less than zero is a, >0 for
Y (n)/R(n) =1 and Equation (6) is rewritten as in
the form of

m

F(n)=2 a,|ts(n)/ R@)[" ®

i=0

a,>0 will be used in following evaluations.

Negative value of Equation (7) represents the
closed-loop system with Equation (3) activated as a
negative feedback system around the equilibrium

condition; i.e., Y (n)=R(n). These statements

will be illustrated by the first order polynomial
described in Equation (3). It is in the form of

G(n+1) =[(1- B)R(n) I Ys(n) + BIG(n) 9)

where f satisfies constrains stated above and

becomes a adjustable parameter. Thus, the
ratios F'(n) becomes
F(n)=(1-p)/(Ys(n)/R(n))+p (10)

Taking the derivative of Equation (10) with respect to
Yi(n)=R(n),wehave

OF (n) 1 (Y5 (n) | R(n)) =1~ B) (Y (n) | R(n))? (11)

For negative value of Equation (11), the value of g
must be less than one. The suitability of the proposed
nonlinear adaptive digital controller is based upon
this characteristic. Fig.1 shows ratios F(n) versus
Y.(n)=R(n) represented by Equation (8) for =
0.9, 0.7, 0.5 and 0.3; respectively. Fig. 1 shows that
the value of F(n) is less than one for that of
Y, (n) greater than that of R(#), then the value of
G(n+1) will be decreased; and the value of
F(n) is greater than one for that of Y (n) less

than that of R(n), the value of G(n+1) will be

increased. This implies that the controlled system
connected with Equation (8) will be regulated to the

equilibrium point (Y;(n)/R(n)=1) and gives a
negative feedback control system for deviation from
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equilibrium point. From Fig.1, it can be seen that one
can adjust S to get desired regulating slope; i.e.,
regulating characteristic. Certainly, other tracking
functions can be formulated and proposed also for the
considered system, if its derivative with respect to
Y.(n)/R(n) isnegative.

Fig.2 shows the connected system
configuration in which Equation (9) and output of the
nonlinear controller are modified for negative control
swing is generally required. The equation is rewritten
as in the form of

G(n+1) =[A-B)(R+Y,)/(¥s(n) + Yp) + BIG(n) (12)

where Y represents the negative control swing,
Y, (n) represents the sampled with hold output of

the plant at sampling interval n T, and U is the
sampled with hold output of the controller. The
values of G(n) and F(n) will be all positive for
the summation of Y (n) and Y (or R andY)) is

greater than zero with specified values of Y, . All

positive values will give better continuity and
regulating characteristic of the series. The value of g
is greater than zero and less than one. Equation (11)
implies ratios G(n+1)/G(n) are in the form of

F(j)=[A-B(R+Y,) I(Yg () +Yp)+ Bl

13
j=123,mn+l- (13)

For illustration purpose, the equivalent block
diagram of Fig. 2 is shown in Fig.3, in which small

offset values & given in nonlinearities V; and
N, will be used to prevent numerical singularities
of Equations (12) and (13) and null of G(n+1).
Note that the zero value of G(rn+1) will make
values of G(n+k) beequal to zeros for & is greater
than one; i.e., the controlled system becomes open.
The saturation level of N, is in the form of

S, =R/P(0) (14)

where P(0) is the DC gain of P(S), if it exists. The
value of S represents the actuating limitation of

real system and will eliminate undesirable transient
behaviors. The inputs of the plant are in the form of

u(n +1)=G(n+1)-Y,IP(0) (15)

for the negative swing control with positive values of
B G(j) and F(j).
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I11. Numerical Examples

The first example [5] is shown in Fig.2, in
which P(S) is in the form of

100
Plo)= s(1+0.1s) 10

After it has been closed with feed-forward gain 0.03,
the DC gain of the closed-loop subsystem P(s) is
unity; i.e., P() is equal to one and the saturation

level S described by Equation(14) is R. The

sampling period 7 is selected to be equal to 1/40

second. The time responses of the overall system
with the nonlinear digital controller for £=0.95 is
shown in Fig.3. The magnitudes of reference inputs
between 0 and 2 seconds are equal to 1; between 2
and 6 seconds are equal to -0.2, between 6 and 9
seconds are equal to 0.6, and between 9 and 12
seconds are equal to 1.2, in which gives output
Y (solid-line), control input G(j) (dash-line), and
ratios F( j ) (dot-line) of G( j) . Fig.3 shows that all
values of G(j) and F(j) are positive while the
value of output Y tracking the negative value of the
reference input R. The value of R may be positive or
negative. Fig.3 shows also that ratios F(j) are
converged to be unities quickly; i.e., the controlled
output tracks the reference input quickly. Fig.3 shows
time responses for £=0.95 and sampling frequency
equal to 60, 40, 30, 20Hz; respectively. Fig.4 shows
that 40Hz (i.e., 73 =25ms) is fast enough for the

considered system. From Figs. 3 and 4, one can see
that undershot are worse than overshot. This is
resulted from the asymmetric properties of Equation
(9) which is shown in Fig.1. It is worth while to find
a ratio function with symmetric properties.

Now, consider an electro-hydraulic velocity
servo system [6] shown in Fig. 5 with system
parameters given below:

Ky=23x10"" [P, —sign(X, )b, m’/s
P=14x10" N, /m*;B,=35x10" N, Im’
V,=33x10 " m®/rad

Cp=23x10"" m*/s/N,

D,, =16 x 10 ° w*lrad
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J=58x10 ° Kg-m-s’
B,,=0.864 Kg-m-s/rad

K, =05mlv

The objective of the control is to keep the velocity
@, of the hydraulic system following the desired
reference input. The relation between the valve
displacement X, and the load flow rate Q, is
governed by the well known orifice law [7]

0,=X, Kj \/PS —sign( X, )P,
=X, K, (17)

where Kj is a constant for specific hydraulic motor;

Ps is the supply pressure; P; is the load pressure and;
K is the valve flow gain which varies at different

operating points. The following continuity property
of the servo valve and motor chamber yields

0= Dy @, + CpPir(Vi45)F, (9

where D,,, is the volumetric displacement; C,p is
the total leakage coefficient; V, is the total volume

of the oil; A, is the bulk modulus of the oil; and @,

is the velocity of the motor shaft. The torque balance
equation for the motor is in the form of

D, P.=J @ +B, ®, +T, (19)

where B,,, is the viscous damping coefficient and 7

is the external load disturbance which is assumed to
be dependent upon the velocity of the shaft or slowly
time varying as described by the following equation:

7,=20| @, | (20)

The step responses of the Example 2 for
/=0.7,§,=0.108, T =1/200 second, and the values of

the reference inputs R between 0 and 0.3 seconds are
equal to 1; between 0.3 and 0.6 seconds are equal to
0.4, between 0.6 and 0.9 seconds are equal to 0.8, and
between 0.9 and 1.2 seconds are equal to 0.2, are
shown in Fig. 6, in which gives the output
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Y(solid-line), the series G(dash-line) and ratios
F(dot-line) of the series. Fig.6 shows that the
ratios (' j ) are converged to be unities quickly also.

IV. Conclusions

In this literature, a new nonlinear digital
controller has been proposed for analyses and designs
of sampled-data feedback control systems. The
convergence of ratios was illustrated by two servo
system examples. From simulation results, it can be
seen that the nonlinear digital controller provided
another possible control scheme for considered
sampled-data feedback control systems and it is
worthwhile to find symmetric F(j) to get same

overshot and undershot.
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Fig.1 G(n+1)/G(n) Versus Y, /R for £#=0.9,0.7,0.5, and 0.3.
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Fig.3 Time Responses of Example 1 for £=0.95.
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Fig.4 Time Responses of Example 1 for Sampling Frequency Equaling to 60,
40, 30, and 20Hz.
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Fig.5 Mathematical Model of Example 2.
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Fig.6 Time Responses of Example 2 for £=0.7.
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