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Stable adaptive control for multivariable nonlinear system
via Takagi-Sugeno fuzzy model
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Abstract

This paper presents a stable adaptive control methodology for a class of nonlinear systems. By Lyapunov’s
linearization method, the nonlinear system is first linearized on some operating points to produce linear dynamic
models locally. Then, the Takagi-Sugeno fuzzy model (T-S fuzzy model) is adopted to aggregate these local
models and formulates the approximation system. On the assumptions about the system’s properties, the fuzzy
system can be viewed as a linear perturbed system. The adaptive sliding mode controller is derived to ensure the
asymptotic stability of the control system. In contrast to parallel distributed compensation, the proposed method
is simple and easy for practical application. Two simulation cases, inverted pendulum system and articulated
two-link robot, are employed to demonstrate the effectiveness of the proposed approach on stabilization and

tracking control.
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l. Introduction

In industry, most control systems are nonlinear
and too complex to have their exact mathematic
models. Mathematically these systems can be
represented by a nominal model (linear or nonlinear)
with uncertainty (structured or unstructured). The
analysis and synthesis of those control systems
consider not only stabilization problems but also the
robustness in the presence of uncertainties. Over the
past decades, the issue has drawn much research
interest and many significant developments have
been reported. Among various kinds of control
studies, the fuzzy control is undoubtedly regarded as
one of the most active and fruitful disciplines.

The Takagi-Sugeno (T-S) fuzzy system, first
introduced in[l1], is known as a universal
approximator for nonlinear system or function.
Essentially it is an interpolation method. The
physical nonlinear systems are assumed to be
approximated by a set of linear or nonlinear models
around some local operating points. These local
models are then smoothly aggregated via the fuzzy
inferences. Therefore, the T-S fuzzy model provides
a compact and flexible mathematic description for
complex or ill-defined system. Based on this idea,
many nonlinear control approaches have been
developed.

Initially, sufficient condition for stabilization
control deduced in[2] was established on the
hypothesis that there must is a common matrix P for
each fuzzy local systems. However, the common
matrix P was not easy to obtain until Tanaka[3]
introduced linear matrix inequality (LMI) method to
solve this problem. In fact, the LMI is a very
powerful tool for the analysis and design of control
systems[4]. Most of the published results are based
on LMI approach to derive sufficient conditions for

the stabilization of fuzzy systems. However, the
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existence of the solution is not guaranteed. As the
number of fuzzy rules increases or too many
constraints are imposed, the solution could be
infeasible[5].

In contrast to LMI’s method, the adaptive
control method is considered as an alternative to
dealing with the control of fuzzy systems. In
particular, based on the universal approximation
theorem and by incorporating fuzzy system into
adaptive control scheme, the adaptive fuzzy control
approaches are presented in[6, 7, 8]. Moreover, an
adaptive fuzzy based controller combined with
sliding mode control has been studied in[9, 10],
where the controlled system is nonlinear and in
controller companion form.

In this paper, we propose a conventional control
approach for nonlinear multivariable systems. The
controlled system does not require being in controller
companion form. When some assumptions regarding
the properties of the system hold, the fuzzy system
can be transformed into the conventional sliding
mode control scheme. With the help of fuzzy basis
function and adaptive mechanism, the system
uncertainties and the corresponding upper bounds
can be estimated. Based on the Lyapunov functional
analysis, the adaptive laws are constructed to
guarantee the stability of the control system. Finally,

numerical examples are presented to verify the

effectiveness of the proposed control method.

1. Problem statements

Consider a nonlinear system described by

x(1) = f(x(@), u(?)) (1)
where x(f) e R"is the state vector, u(¢) e R” is the

control vector. It is assumed that

S (@), u(®)) is

respect to x(¢) and u(f) and has linear dynamics

input

continuously differentiable with
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around some operating points (x;,u;). Then, by

using a linearization method[11], we have
X() =Ax(t)+Bu(t)+d(t), i=1,2,---,q (2)

where A, = (of /ox) B, =(9f /0u),,, . and

d;(¢) stands for the approximation error. Since the
linearized models depict system dynamics in local
region around the operating points, it is advisable to
aggregate these models and formulate the
approximation system by T-S fuzzy inference. With
proper selection and definition of input variables and
membership functions, the T-S fuzzy inferences are
in the form of
R':If z,(t)isM] and ---and z(t)is ME
then x(t) = A x(t)+B,u(t)+d,(t) 3)
=1 2, -+, q.
where M,i is the fuzzy set (k=12,---,j) and
2(1) =[z,(8), 2, (2),"++, 2, (t)]Tis the premise variable
vector associated with the system states and inputs.
By center of gravity defuzzification, the output

of fuzzy system is inferred as

S (D) Ax(e) + Bu(t) + (1)
() =+ “@

3w (2)

LIM,'I(Z,-) and Mf(z,-) is the

where w;(z)=

grade of membership function Mf corresponding

z;(t). Let g;(z) be defined as
w;(z
() =G 5)
ZWJ (2)
I=1
Then (4) becomes

(0= A0 + Bu®) +d, (0] (©)

q
It is obviously Z,u,(z)=l and y(z)=0 for
I=1

1=1,2,-,q .
Inspired by the works of [8], we modify the
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fuzzy system (6) as
x(1) = (A, + AA(1, x))x(2)

7
+ (B, + AB(t,x))u(t) + D(t,x) M
where
q l q
A, =—)» A,, B,=—) B,,
’ q :Z:; I q =
AA(L,x) = 1 (2)(A, - A,), ®)

i=1

AB(1x)= Y u,(2)(B, - B,). D(t.x) =Y u,(2)d, .

From (7), it can be seen that the T-S fuzzy
system is depicted as a perturbed linear system with
the nominal matrices (4,,B,) , the perturbations
(AA(t,x),AB(t,x)), and the modeling error or

disturbance D(¢,x).

I11. Design of adaptive sliding mode
fuzzy control

To complete the derivation, we impose the
following assumptions on system (7).
Assumption 1. The pair (A4,,B,) is completely
controllable.

Assumption 2. The state x(¢) is available for

measurement.

Assumption 3. The perturbations (44A(tx), AB(t, x))
and the modeling error D(%, x) are matched. That is,
there exist matrices

E():RxR" —R”", F():RxR" —>R"", and
G():RxR" = RP, such that

AA(t,x) = B,E(t,x),

AB(t,x) =B F(t,x), D(t,x)=B G(t,x) . 9)

Based on the assumptions, the system (7) can be

rewritten as
x() =Ax(t)+ B, (u(t) +&(t,x)) . (10)

where &(z,x) € R? denotes the lumped uncertainty.

For the system with uncertainty, the sliding
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mode control (SMC)[11] is a useful control strategy.
It provides a systematic approach to solve the
problem of maintaining stability and consistent
performance. The design of SMC consists of two
phases. The first phase is to construct an appropriate
sliding surface so that the system conducted on the
sliding surface will produce a desired behavior. That
is, the system is invariant to the uncertainty or
disturbance and consistent performance is achieved
while the states are maintained on the surface. The
second phase is to design the control law so that the
sliding condition[11] is satisfied. In particular, once
on the surface, the system trajectories will remain
there for all the subsequent time.

Since the uncertainty &£ is assumed to be
matched, we define the time-varying sliding surface

as

Q= {x:S(x) = Cx =0} (11

where C is a pxn constant matrix such that

CB, is nonsingular and the reduced (n— p) order

equivalent system restricted to the surface is
asymptotically stable. Consider the sliding
condition

. 2
8'S <—K]s] (12)

where K is a positive real number and |||| denote the
Euclidean norm.

Differentiating S(x) with respect to time gives
S(x) = Cx(1)

(13)
= CA,x(t) + CB, (u(t) + &(t,x))

To satisfy the sliding condition, the control law is

chosen as

u=—(CB,) " (CAx+KS)-¢& (14)
Since there is an uncertainty &, the design of
controller requires estimation of the uncertainty.

Generally, this can be completed by using an
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adaptive mechanism to evaluate the norm value of
uncertainty. However, when the system is complex, it
is difficult to construct the adaptive mechanism
because the relationship between measurement
variables and system uncertainty is ambiguous. In
this situation, the fuzzy inference is useful for
manipulating adaptive estimation.

The idea that the fuzzy system is a universal
approximator that can approximate any real
continuous function on a compact set to an arbitrary
accuracy is well known. Many explored adaptive
fuzzy control approaches are based on this concept
[6-10]. In the following derivation, we will use the
fuzzy basis function to approximate the uncertainty
& and develop the adaptive laws for estimation of the
uncertainty and the corresponding upper bounds.

Consider the following Mamdani type fuzzy

inference that is to approximate the i ™ element of

f’

i, as

R™:If x,(t)isM™ and---and x () is M™
then &, isﬁim,m=1,2,---,r .

The output of fuzzy system is inferred by

30, ([ T 6

£ _ m=l h=1
§(x|6)="—-"

15
ST ) ()
m=1 h=1

=0 o(x)
where 6, =(60,,0,,,---,6,)" is an adjustable

parameter vector, 6,, is the center of 5,,,1 for

im

i=12,---,p, and w(x) is called the fuzzy basis

function. The estimation of & 1is given

by E(x|0)=0"w(x) and @ € R™”. Define an

optimal parameter matrix as

0" = arg min{sup|é(x | 0) ~ £(1. )} (16)
2 x

and assume
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Hé(x 16%)— &, x)” <g +a|H (17)

where & and &, are unknown positive constants
and will be estimated via adaptive mechanism.

Choose the control law to be

u=—(CB,)" (CA,x+KS)-¢
aral (8)

T AT °
B/CS|
where £ and &, are the estimations for &,and &,

and |||| for the matrix denotes the induced norm.
Substituting (18) into (13) gives
CB, (&, +&|x|)

Q— _KSQ_ 8y T ~T
S=-KS-CB,(-&) BchSH B!C'S

=—KS+CB,E+CB,(£-£) (19

_ CB, (¢ +82HXH) B'CTS+ CBO(El +EZHXH) BICTS

B, C'S B,C'S
where
E=E(x|0)-E(x]0), & =E(x|0),
& =¢—-¢and & =¢,—&,.  Multiplying
ST to the right side of (21) gives
S™S=—K|S| +S"CBE +S"CB (&-£7)
(20)

(&, +&|B C"S|+ (& +&|H)|BIC"S]

Define the parameter error as 0=0"-60 and

choose the Lyapunov functional candidate

1 1 ~ e~
Vit)==S8S"S+—u[0"6
(?) > > [ ]

ur @1
1 -, 1 -,
+—F+—F;
2m, 2m,

where 77,, 17, and 7, are the adaptation rates.

The time derivative of V(#) along the dynamics of S

is

5 T ¢ ~T 1 _ |
V(i =SS - u[ 0 6]- —F, 8, - —F, 4
o r ny T ny 2%2
=7KHSH2+STCBOE+STCB0(§*5*)
’(51+£2HXH)‘BECTSH+(EI+52HxH)‘BOTcTsH
—l—tr[ETé]fl—zlélfl—zzgz
Mo N Mo

IN

—k|ls|]* + nl—tr[ET (mgasS TCB 4, - )]
0

TA~T
o C

tle-& B S Ts]- e keSS
+ l—El(anBECTSH— )
m

Ts

1 .
Eoel2XUPY CHERE! [ L (22)
2

Notably, & = 0" 0-0Tw=0"w. If the following
adaptive laws are employed
6=n,0S"CB,,
& =n[BIC"]. 23)
&, =m,[BIC"S|x] -

; 2
then we have V() < —K”S” (24)
Consequently, ¥(#) is a bounded function, which
implies that S, 5, £, and &, are all bounded.

From the definition of S one can conclude that the

state x will be confined in certain range. To prove

lim S(¢#) =0, we define V,(¢)as

11—

o =ve- [ @ +K|s@|Hdr (25

It follows thatV,(¢) 2 0. Differentiating V;(¢) with

respect to time gives
V=V @0) -0+ K[SO)

(26)
=—K|so[

Moreover, f/'l(t) =—2KSTS is bounded. By using

the Barbalat’s lemma[ll], we have [lim S(t)=0.
t—

That implies /im x(#)=0 and the closed-loop
t—0

system is asymptotically stable.
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Based on the above discussion, we may briefly
summarize the design procedure for the controlling
nonlinear multivariable systems.

Step 1: Select certain operating points concerning
with the system performance and perform
linearization on these points to obtain the local linear
models.

Step 2: Choose appropriate linguistic variables and
define the corresponding membership functions to
build the T-S fuzzy model.

Step 3: Calculate the nominal matrices (4,,8B,)
and examine the controllability.

Step 4: Verify the matching condition(9).

Step 5: Construct an appropriate sliding surface in
which the reduced-order equivalent system will be
asymptotically stable on this surface.

Step 6: Apply the control law(18) and adjust the

parameters 0, &, and &, by adaptive law(23).

1. Simulation

In this section we take two examples to
illustrate the design procedure and verify the
effectiveness of the proposed algorithm.

Example 1. The control objective is focused on
balancing an inverted pendulum on a cart. The
dynamic equations of the pendulum are given by

X =X,

_ gsin(x,) —amix; sin(2x,)/2 — acos(x, Ju

2

41/3 —amlcos®(x,)

where xis the angle of the pendulum from the
equilibrium position, x, is the angular velocity, and
u 1is the force applied to the cart. The parameters are
given as follows: g= 9.8m /s> the gravity constant,
m = 2.0kg the mass of the pendulum, M = 8kg the
mass of the cart, 2/ =1.0m the length of the
pendulum, and a =1/(m+ M).

The nonlinear system has linear models on 0
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T
and iE and the T - S fuzzy system for

approximation is defined as[12]:

R' :If x, is about 0, then % = A,x + Bju +d,,

R2 :If x, is about + 2= then x = Ayx + Byu+d,.
2

The matrices 4,, 4,, B,, and B, are the local

linear models as following:

0 1 0 1
- - 2
4, = g ol A2 = g — 0
41/3 — aml w(4l/3 —amlf” )
0 0
B;=|_ a , By=|_ ap ,
41/3 — aml 41/3 —amlp

where S =cos(88°). Then, according to(10), we

obtain the nominal model

0 1 0
4, = . B, = .
13.3271 0 ~0.0909

Since the local linear models are in controllable
canonical form and the uncertainties satisfy the
matching condition, the adaptive sliding mode
control can be applied. Define the sliding surface as
s=[A 1]. The adaptive fuzzy mechanism for

estimating ¢ is defined as

R' :If y,isM,, then EisD', 1=1,2, .., 5.

The corresponding membership functions are plotted
S . . T
in Fig.1. The universe of discourse [__’E] is

normalized over this range. Moreover, the proposed
method is compared with the conventional parallel
distributed compensation (PDC) with state feedback
K, =[1900.13 2483.11]
K, =[3.33 7.12], which are calculated by LMI’s

gains and
method.

The of 6
le-3*[1 1 -1 —1 —1]", and the values of & and

initial  value is set to Dbe

& are 0 and 1 respectively. The simulation results
are plotted in Fig.2 and Fig.3, where solid line
presents adaptive T-S control with A =20, dash line
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depicts adaptive T-S control with A =10 , and
dash-dot line stands for control by PDC. We choose
two different values of A to inspect the convergent
rate of x,.
The simulation reveals that the large
A produces fast convergence and both can achieve
stable control.
Example 2. Consider a two-link articulated robot

described by the following dynamic equations[11]:

[Hu H12:||:éj1:|+|:_h92 _hq.z_h%:”:q.l}z[fl}
H, Hy|4, hq, 0 q, 7,
where

H, =a,+2a,cos q, +2a,sin q,,

H12

H,, =a,,

=H, =a,+a,cosq,+a,sinq,,

h=a;sinq,—-a,cosq, .

and
a, =1, +m% +1,+m,> +m,l},

a,=1,+m 12

e"ce>
ay =m,ll, cosd,,

ay, =m,ll,sind,.
The values of parameter used in the simulation are as

follows:

m =1, I, =1, m=2, 5 =30°, I, =0.12,
1,=05 1,=025 1_=06.

Since the inertia matrix H is uniformly positive

definite, the system dynamics can be rewritten as
. -1 . . . .
|:qu| :{Hn le} { hq, h(q, +qz)}{q1}
qz H21 sz o hql 0 qz
-1
H H
N { 1 12 } {51 }
H, H, 1,
=F(q, 9)+G(q)r

We use T-S fuzzy model to present the system

dynamics and apply adaptive sliding mode control to
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obtain the desired performance.

First, the Coriolis torque term is linearized on
certain operating points to build the linear model
H(q,)g=Aq+1t+d,i=1,2,---,m

where

A, ZQH hd,  h(g, +q2>}{ql D
Caall-ha 0 Ja)

Then, the T-S fuzzy model is defined as

R':If q, is about O and g is about q,
then q:Hil(qz 67) [Aq+t+d]
for i=1,2,---,k. In simulation, we choose three

operating points, *land 0, for & and (¢, is set

near zero (¢, = ¢, = le-6 ). By some calculation, we

have
x, ] [0 0 1 0 X,
X, | |00 0 1 X,
X | |0 0 —7.23x10° —6.99x107° | x,
X,| [0 0 0.164x10° 747x10° |x,

0 0 0

0 0 [r,] |0

0.68 —-1.29 Lj+ g,

-1.29 3.55 g,

where X, =, X,=q,, X,=(, X,=(,, and ¢& and

&, denote the uncertainties. The nominal system is
controllable and the uncertainties satisfy matching
condition.

The next step is to define the sliding surface. It

is advisable to choose S(x)as

{/1 01 0}
S(x)=Cx= X

04 01

When the states are maintained on S(X), the
dynamics of the reduced-order equivalent system

becomes

X1:X3:_7“X10
X2:X4:_>“X4 .

Obviously, it is asymptotically stable.
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The adaptive fuzzy mechanism for the

SO=CG X=x-xy4

estimation of & is given by

where x,denotes the desired trajectory. Moreover,

R':If q, is M,, then &, is D! and &, is D!,
1=1, 2, ---, 5.

the control law (18) is replaced by

u=—(CB,)"(CA X+KS+CA x,-Cx,)

The wuniverse of discourse of ¢, and the

corresponding membership functions are given in y —%ﬂ”X”BECTS
Fig.1 The initial values of parameters are chosen as ‘BO ¢ SH
T
0:3*[1 B ” V. Conclusion
This paper presents a systematic design
5‘1 =<€‘2 =5, and 1 =50. approach for controlling multivariable nonlinear
We first investigate a step response of the robot system based on T-S fuzzy model. The concept is
motion. The robot is initially at rest, ¢;=¢,=0, simple and easy to apply. In contrast to PDC control
and then a step-input command scheme, the proposed controller is constructed

X N without considering the linear matrix inequalities.

(qq =60°, q4, =90")is issued. The performances .
Therefore, there is no common P problem. When
of position control errors and the corresponding input some assumptions regarding the properties of the

torques are plotted in Fig.4 and Fig.5, where solid system hold, the sliding mode control can be applied

line presents control by our method and dash line such that the asymptotic stability of the global
stands for PD control. In the simulation, our system is ensured. The effectiveness of proposed
approach is compared with PD control described in approach is illustrated by computer simulations of

[11]. It is shown that the control results of both the inverted pendulum and the two-link robot.
approaches are stable. The next case is to examine

the tracking ability. The robot has to follow desired
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